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Abstract—This paper further develops the topic of the authors’ previous research. In particular,
order statistics of the discrete normalized spectral distribution of the additive white Gaussian
noise are investigated to detect a deterministic useful signal in a noise mixture using information
features. An additional relationship is established between the discrete spectral distribution of
the single-window realization statistics of the white noise. Another novel result consists in
exact formulas for calculating the mean and variance of normalized order statistics. Based
on the analytical expressions derived, a new formula for calculating the spectral complexity is
proposed and the already known one is refined. The theoretical results are verified by statistical
simulation.
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1. INTRODUCTION

The problems of detecting deterministic, chaotic, and random signals have attracted the atten-
tion of researchers since the time of studying space objects [1, 2]. When solving such problems, the
main difficulty lies in the unknown properties and characteristics of the observed signal. Therefore,
the periodic repetition of a signal over time is often treated as a feature of the appearance of a
deterministic signal. Then, based on the results of observations, the received energy is accumulated
and averaged, and the presence/absence of the desired signal is concluded accordingly [3].

The statistical foundations of the theory of signal detection and classification in noise were laid
in the 1950s–1960s [4]. In turn, machine learning methods allowed solving classification problems
based on extracting a set of individual features [5]. Over the last 30–40 years, research results have
appeared in the scientific literature in which information characteristics of temporal or spectral
distributions are used as detection and classification criteria. Since entropy or information is insen-
sitive to the permutation of discrete samples of distributions, the gaze of the scientific community
is directed to studying the distributions of order statistics and describing their properties [6, 7]. In
recent years, entropy and related indicators have been frequently applied in the analysis of elec-
troencephalography (EEG) and brain activity [8]. Another example of using signal entropy and
related spectral complexity is the problem of signal classification, as shown in [5, 9]. Lately, order
statistics have found applications in generative neural networks [10] and the related Wasserstein
distance and theory of optimal transport [11, 12].

In many detection problems, the signal being detected is often supposed known [13]. In practice,
the pre-detection problem is also popular when it is important, e.g., to determine the presence of
a deterministic signal in white noise [14, 15].
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ORDER STATISTICS OF THE NORMALIZED SPECTRAL DISTRIBUTION 1169

This paper aims to establish statistical regularities in the single-window observations of white
noise and studying the evolution of these regularities when a signal appears in the mixture. An
expected result is a new tool for detecting (and, subsequently, classifying) a signal under small
values of the signal-to-noise ratio (SNR).

The remainder of this paper is organized as follows. In Section 2, we present the mathematical
formulation of the problem and the background necessary for further considerations. Sections 3
and 4 contain the main analytical results of this research, namely, the lemmas and propositions
for finding the mean and variance of the normalized order statistics of the spectral distribution
of the white noise when processing the observations of a single rectangular window. In Section 5,
new information characteristics of signals are introduced based on the analytical results obtained.
Section 6 describes the results of numerical simulations confirming the theoretical constructs of the
previous sections. In Section 7, we summarize the outcomes of the paper.

2. PROBLEM STATEMENT AND BACKGROUND

The problem of detecting a signal s(n) is traditionally reduced to that of distinguishing between
two hypotheses [15]: {

Γ0 : x(n) = w(n)
Γ1 : x(n) = s(n) + w(n), n = 1, . . . , 2N + 2.

The hypothesis Γ0 is associated with the decision to receive only noise while the hypothesis Γ1

with the decision to receive a mixture of a useful signal and noise, where the sequences {x(n)},
{s(n)}, and {w(n)}, n = 1, . . . , 2N + 2, denote the time series of the received data, useful signal,
and additive random noise, respectively, and 2N + 2 is the time series length. The random variables
(x(1), . . . , x(n), . . . , x(2N + 2)) of the time series take values (x1, . . . , xn, . . . , x2N+2) ∈ R2N+2.

To estimate the probability of erroneous hypotheses distinction, we can apply a modification of
the Neyman–Pearson lemma in which the error function is described by the exact formula

Er(N ; Γ0,Γ1) = 1− 1

2
‖P (N)

0 − P
(N)
1 ‖ = 1− TV (P0, P1), (1)

where P
(N)
0 and P

(N)
1 are the multivariate distribution functions of observation statistics for the

hypotheses Γ0 and Γ1, respectively, TV (P0, P1) is the total variation of the measure with a sign,
and ‖Q‖ = 2 supA |Q(A)|. Thus, if the carrier sets of the measures P0 and P1 do not overlap,

then error-free hypotheses distinction is possible. If the measures P
(N)
0 and P

(N)
1 are close, then

‖P (N)
0 − P

(N)
1 ‖ ≈ 0 and, in this case, Er(N ; Γ0,Γ1) ≈ 1.

The peculiarity of the problem is to detect a deterministic signal under small SNR values,
i.e., Er(N ; Γ0,Γ1) ≈ 1, by analyzing the spectral properties of the received signal-noise mixture
and information criteria. Due to this peculiarity, the following problem was formulated in the
paper [16].

Problem 1. Consider a given realization {x1, . . . , x2N+2} for a sequence of independent random
variables {ξ1, . . . , ξ2N+2} with zero mean. Let the discrete Fourier transform (DFT)

Xk =
2N+2∑
n=1

xne
−2iπk(n−1)/(2N+2) (2)

be applied to this sequence to obtain the random variable

Ξk =
2N+2∑
n=1

ξne
−2iπk(n−1)/(2N+2), (3)
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where k = 0, . . . , N. (Due to the symmetry of the DFT of a real signal, the second half of N + 1, . . . ,
2N + 1 complex amplitudes of the spectral samples is conjugate to the first.)

It is required to find the discrete probability function of the normalized ordered spectral distri-
bution nk(N) as the normalized mean for each kth value of the random variable

ηk(N) =
(TI)k
EX

, (4)

where Ik = ΞkΞ
∗
k (the square of the amplitude modulus or the energy of the spectral sample),

EX is half of the signal energy, and T is the non-descending ordering operator of the series, and to
investigate the properties of the resulting distribution on different information measures.

To solve Problem 1 in the general case, one needs to calculate

E[ηk(N)] = E

[
(TI)k
EX

]
. (5)

In 1898 A. Schuster established that the distributions of the random variables Ik, k = 1, . . . , N,
are exponential, and the random variable I0 obeys the χ2 distribution with one degree of freedom.
This fact holds if the random variables ξn, n = 1, . . . , 2N + 2, are independent Gaussian ones with
zero mean and variance σ2

0 , as demonstrated in [17].

Remark 1. The total number of signal samples in the time domain is set equal to 2N + 2 for
the convenience of analyzing the energies Ik of half of the spectral samples, only N of which obey
the exponential distribution.

In this paper, the detection problem is solved with a criterion defined by an information charac-
teristic, i.e., complexity represented as the product of entropy and the L1 norm of two distributions.
Being only a function of the discrete spectral distribution, entropy possesses insensitivity to the
permutation of its samples; being a function of two distributions, complexity is sensitive to per-
mutation when calculating a relatively nonuniform distribution. Therefore, when postulating the
order of samples in a discrete distribution, a rule is established for calculating the information
characteristics. As such a rule, we will use ascending or descending ordering for spectrum samples.

3. MAIN RESULTS. CALCULATING THE MEAN OF NORMALIZED ORDER STATISTICS

The mean of an order statistic normalized by the sum of samples possesses the following property.

Lemma 1. Let z1, . . . , zN be the observations of a random variable Z obeying the exponential
distribution F (z) = 1− exp(−z) with the density function f(z) = exp(−z). Consider the values
of the sequence z(1), . . . , z(N) of the same results rearranged in ascending order, where the random
variable Z(k) is a nondecreasing kth order statistic.

Then the mean of such a random variable normalized by the sum of all elements of the sample
has the form

E

[
Z(k)∑N
i=1 Z(i)

]
=

∞∫
0

zN∫
0
. . .

z3∫
0

z2∫
0

zk∑N

i=1
zi
exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN−1dzN

∞∫
0

zN∫
0
. . .

z3∫
0

z2∫
0
exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN−1dzN

. (6)

Proof. The lemma is directly verified by writing the mean for the order statistic.

Formula (6) differs from the known ones in the calculation of the mean of zk∑N

i=1
zi

by the joint

distribution of the order statistics Z(1), . . . , Z(N). A difficulty arises when calculating the integral
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in the numerator of (6), which is overcome using the relation between the means E

[
Z(k)∑N

i=1
Z(i)

]
and

E[Z(k)].

The density function of the distribution for the kth order statistic Z(k) is defined as follows:

fZ(k)
(z) =

N !

(k − 1)!(N − k)!
f(z)[F (z)]k−1[1− F (z)]N−k.

When substituting the exponential law F (z) this density takes the explicit form

fZ(k)
(z) =

N !

(k − 1)!(N − k)!
exp(−z(1 +N − k))(1 − exp(−z))k−1. (7)

The next formula is a well-known result for finding the mean of order statistics of the standard
exponential law [7]:

E

[
Z(k)

]
=

∞∫
0

zfZ(k)
(z)dz =

N∑
i=N−k+1

1

i
. (8)

On the other hand, this mean can be obtained by the formula of Lemma 1, i.e.,

E

[
Z(k)

]
=

∞∫
0

zN∫
0
. . .

z3∫
0

z2∫
0
zk exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN−1dzN

∞∫
0

zN∫
0
. . .

z3∫
0

z2∫
0
exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN−1dzN

=
N∑
i=1

1

i
−

N−k∑
i=1

1

i
=

N∑
i=N−k+1

1

i
. (9)

Proposition 1. The mean of the normalized order statistic (6) is given by

E

[
Z(k)∑N
i=1 Z(i)

]
=

1

N

N∑
i=N−k+1

1

i
, (10)

which coincides, up to the factor 1
N , with the value of E[Z(k)].

Proof. The repeated integral in the denominator is analytically calculated for an arbitrary upper
limit of the last integral:

a∫
0

zN∫
0

. . .

z3∫
0

z2∫
0

exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN−1dzN =

1

N !
+O(aN−1 exp(−a)).

Passing to the limit as a → ∞ yields

∞∫
0

zN∫
0

. . .

z3∫
0

z2∫
0

exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN−1dzN =

1

N !
. (11)

This result can be alternatively established by observing that

∞∫
0

∞∫
0

. . .

∞∫
0

∞∫
0

exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN−1dzN = 1.

At the same time, this integral consists of the sum of N ! integrals of the form (11) (by the number
of all permutations of zi, i = 1, . . . , N).
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Now we study the integral in the numerator of (10). The repeated integral in the numerator is
analytically calculated for an arbitrary upper limit of the last integral:

a∫
0

zN∫
0

. . .

z3∫
0

z2∫
0

zk∑N
i=1 zi

exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN−1dzN

=
1

N !

1

N

(
N∑
i=1

1

i
−

N−k∑
i=1

1

i

)
+O(aN exp(−a)) +O(aN+1Ei(1, a)),

where Ei(1, a) =
∞∫
1
t−1 exp(−ta)dt.

Passing to the limit as a → ∞ gives the desired result.

Section 4 proposes a method for calculating the variance of a normalized order random variable,
which can also be used to prove Proposition 1.

Simultaneously, several interesting results have been obtained concerning repeated improper
integrals:

∞∫
0

zN∫
0

. . .

z3∫
0

z2∫
0

exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN =

1

N !
, (12)

∞∫
0

zN∫
0

. . .

z3∫
0

z2∫
0

1
N∑
i=1

zi

exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN =

1

N − 1

1

N !
, (13)

∞∫
0

zN∫
0

. . .

z3∫
0

z2∫
0

1(
N∑
i=1

zi

)2 exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN =

1

N − 2

1

N − 1

1

N !
. (14)

They can be calculated using the following property.

Proposition 2. For an arbitrary natural degree p, N − p � 1, wee have

M(p,N) =

∞∫
0

∞∫
0

. . .

∞∫
0

∞∫
0

1(
N∑
i=1

zi

)p exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN =

(N − p− 1)!

(N − 1)!
. (15)

For p � N, this integral becomes meaningless due to its divergence. Moreover, for an arbitrary
natural degree p,

∞∫
0

∞∫
0

. . .

∞∫
0

∞∫
0

(
N∑
i=1

zi

)p

exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN =

(N + p− 1)!

(N − 1)!
. (16)

Proof. The change of variables {zi}Ni=1 → {xi}Ni=1 in the integrals (15) and (16) is performed by
the following rule [18]:

x1 =
z1
xN

, . . . , xN−1 =
zN−1

xN
, xN =

N∑
i=1

zi. (17)
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To find the Jacobian J(x1, . . . , xN ) of the mapping (17), it is necessary to express the vari-
ables {zi}Ni=1 through {xi}Ni=1:

z1 = x1xN , . . . , zN−1 = xN−1xN ,

zN =
N∑
i=1

zi −
N−1∑
i=1

zi = xN −
N−1∑
i=1

xNxi = xN

(
1−

N−1∑
i=1

xi

)
.

After elementary transformations, the Jacobian of this mapping is reduced to the determinant
of the upper-triangular matrix and equals J(x1, . . . , xN ) = xN−1

N . Therefore, the integral (15) is
calculated as follows:

M(p,N) =

∞∫
0

∞∫
0

. . .

∞∫
0

∞∫
0

(
N∑
i=1

zi

)−p

exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN

=

∞∫
0

x−p
N xN−1

N exp (−xN ) dxN

⎛⎝ 1∫
0

xN−1∫
0

. . .

x2∫
0

dx1 . . . dxN−2dxN−1

⎞⎠

=

∞∫
0

x−p
N

xN−1
N

Γ(N)
exp (−xN ) dxN

⎛⎝Γ(N)

1∫
0

xN−1∫
0

. . .

x2∫
0

dx1 . . . dxN−2dxN−1

⎞⎠

=

∞∫
0

x−p
N

xN−1
N

Γ(N)
exp (−xN ) dxN

1∫
0

. . .

1∫
0

dx1 . . . dxN−1 =
Γ(N − p)

Γ(N)
=

(N − p− 1)!

(N − 1)!
.

The integral (16) is found by analogy. Finally, note that the integral (15) consists of N ! identical
integrals of the form (13) for p = 1.

Here is another interesting mathematical result on the calculation of the integral (13).

Lemma 2. For any N ∈ N, the integral (15) with p = 1 can be somehow represented by dividing
into two parts containing k and N − k elements:

M(1, N) =
1

Γ(N − k)Γ(k)

∞∫
0

∞∫
0

ζN−k−1ηk−1

ζ + η
exp (−(ζ + η)) dζdη. (18)

Proof. This lemma can be verified using two changes of variables in the integral, similar to the
proof of Proposition 2. Note only that in this case, as before by Proposition 2, M(1, N) = 1

N−1 .

4. MAIN RESULTS. CALCULATING THE VARIANCE
OF NORMALIZED ORDER STATISTICS

Now we have the problem of calculating the variance D

[
Z(k)∑N

i=1
Z(i)

]
; to this end, it is necessary

to find E

[
Z2
(k)(∑N

i=1
Z(i)

)2
]
.

Proposition 3. The desired mean can be obtained as follows:

E

⎡⎢⎣ Z2
(k)(∑N

i=1 Z(i)

)2
⎤⎥⎦ =

1

N(N + 1)
E

[
Z2
(k)

]
. (19)
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Proof. The means in both parts of the equality are written by definition considering the order
of integration:

E

[
Z2
(k)

]
= N !

∞∫
0

zN∫
0

. . .

z3∫
0

z2∫
0

z2k exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN−1dzN ,

E

⎡⎢⎢⎢⎢⎢⎣
Z2
(k)(

N∑
i=1

Z(i)

)2

⎤⎥⎥⎥⎥⎥⎦ = N !

∞∫
0

zN∫
0

. . .

z3∫
0

z2∫
0

z2k(
N∑
i=1

zi

)2 exp

(
−

N∑
i=1

zi

)
dz1dz2 . . . dzN−1dzN .

Similar to the proof of Proposition 2, we apply the change of variables (17) in the integrals to
continue the corresponding equalities:

E

[
Z2
(k)

]
= N !

∞∫
0

∫
· · ·

∫
Ω

xN−1
N x2kx

2
N exp (−xN) dx1dx2 . . . dxN−1dxN

= N !

∞∫
0

xN+1
N exp (−xN ) dxN

∫
· · ·

∫
Ω

x2kdx1dx2 . . . dxN−1

= N(N + 1)N !

∞∫
0

xN−1
N exp (−xN ) dxN

∫
· · ·

∫
Ω

x2kdx1dx2 . . . dxN−1,

E

⎡⎢⎢⎢⎢⎢⎣
Z2
(k)(

N∑
i=1

Z(i)

)2

⎤⎥⎥⎥⎥⎥⎦ = N !

∞∫
0

∫
· · ·

∫
Ω

xN−1
N x2k exp (−xN ) dx1dx2 . . . dxN−1dxN

= N !

∞∫
0

xN−1
N exp (−xN ) dxN

∫
· · ·

∫
Ω

x2kdx1dx2 . . . dxN−1,

where Ω denotes the domain of integration for the new variables x1, . . . , xN−1 under the change. In
the case under consideration, this domain is part of the simplex that arises under a similar change
when deriving the Dirichlet distribution from the generating gamma distributions [19, 20].

Comparing the expressions for E

[
Z2
(k)(∑N

i=1
Z(i)

)2
]
and E

[
Z2
(k)

]
, we arrive at the desired result.

The method above is also suitable for proving Proposition 1.

Corollary 1. Due to Proposition 3 and formula (10), the variance is given by

D

[
Z(k)∑N
i=1 Z(i)

]
=

1

N(N + 1)
E

[
Z2
(k)

]
−

(
1

N
E

[
Z(k)

])2

. (20)

Now we can estimate its value.

Corollary 2. For all N the variance (20) satisfies the upper bound

D

[
Z(k)∑N
i=1 Z(i)

]
� 1

N2
D

[
Z(k)

]
.
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Proof. It follows from Corollary 1 that

D

[
Z(k)∑N
i=1 Z(i)

]
=

1

N(N + 1)
E

[
Z2
(k)

]
−

(
1

N
E

[
Z(k)

])2

=
1

N2
D

[
Z(k)

]
− 1

N2(N + 1)
E

[
Z2
(k)

]
.

The proof of this corollary is complete.

Proposition 4. The second moment and variance of a non-decreasing order statistic are given by

E

[
Z2
(k)

]
=

⎛⎝ N∑
i=N−k+1

1

i

⎞⎠2

+
N∑

i=N−k+1

1

i2
, (21)

D

[
Z(k)

]
=

N∑
i=N−k+1

1

i2
. (22)

Proof. For E
[
Z2
(k)

]
, we have the formula [7]

E

[
Z2
(k)

]
=

∞∫
0

z2fZ(k)
(z)dz =

∞∫
0

z2N !

(k − 1)!(N − k)!
exp(−z(1 +N − k))(1− exp(−z))(k−1)dz

= (HN −HN−k)
2 + ψ(1)(N − k + 1)− ψ(1)(N + 1),

which contains the polygamma function ψ(m)(n) = (−1)(m+1)m!
∑∞

k=n
1

k(m+1) and the harmonic

series HN =
∑N

i=1
1
i .

Substituting the expression ψ(m)(n) into the last equality yields (21). The variance (22) is

obtained from (21) by considering formula (8) for E
[
Z(k)

]
.

Proposition 5. The variance (20) is calculated using the constructive formula

D

[
Z(k)∑N
i=1 Z(i)

]
=

1

N(N + 1)

⎛⎜⎝ N∑
i=N−k+1

1

i2
− 1

N

⎛⎝ N∑
i=N−k+1

1

i

⎞⎠2
⎞⎟⎠ . (23)

Proof. Let us transform the general expression (20) for the variance of a normalized order
statistic using (21) and (10):

D

[
Z(k)∑N
i=1 Z(i)

]
=

1

N(N + 1)
E

[
Z2
(k)

]
−

(
1

N
E

[
Z(k)

])2

=
1

N(N + 1)

⎛⎜⎝
⎛⎝ N∑

i=N−k+1

1

i

⎞⎠2

+
N∑

i=N−k+1

1

i2

⎞⎟⎠−
⎛⎝ 1

N

N∑
i=N−k+1

1

i

⎞⎠2

=

⎛⎝ N∑
i=N−k+1

1

i

⎞⎠2 (
1

N(N + 1)
− 1

N2

)
+

1

N(N + 1)

N∑
i=N−k+1

1

i2

=

⎛⎝ N∑
i=N−k+1

1

i

⎞⎠2 ( −1

N2(N + 1)

)
+

1

N(N + 1)

N∑
i=N−k+1

1

i2

=
1

N(N + 1)

⎛⎜⎝ N∑
i=N−k+1

1

i2
− 1

N

⎛⎝ N∑
i=N−k+1

1

i

⎞⎠2
⎞⎟⎠ .

(24)
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Here are a few more interesting facts from the results above.

Corollary 3. For k = N, formula (22) yields

lim
N→∞

D

[
Z(N)

]
= lim

N→∞

N∑
i=1

1

i2
=

π2

6
.

Corollary 4. For all N, we have

E

[
Z2
(1)

]
=

1

N + 1

2

N2
.

5. THE MEAN VALUE OF THE NORMALIZED ENERGY SPECTRUM DENSITY,
ITS ESTIMATES AND SPECTRAL COMPLEXITY

Let us return to the original Problem 1. After finding the energy spectral samples of one
observation window, y1, . . . , yN , the results of observations of the exponentially distributed random
variable Y generating ηk(N), are introduced [16]. Then the values of the sequence y(1), . . . , y(N) (the
same results rearranged in descending order) are an inverse variational series, where the random
variable Y(k) is a nonincreasing kth order statistic.

In this case, we have

E

[
Z(k)∑N
i=1 Z(i)

]
= E

[
Y(N−k+1)∑N

i=1 Y(i)

]
,

or

ñk(N) = E

[
Y(k)∑N
i=1 Y(i)

]
= E

[
Z(N−k+1)∑N

i=1 Z(i)

]
=

1

N

(
N∑
i=1

1

i
−

k−1∑
i=1

1

i

)
=

1

N

N∑
i=k

1

i
. (25)

Based on (25), it follows that

N∑
k=1

E

[
Y(k)∑N
i=1 Y(i)

]
= N

1

N
= 1,

and the normalization condition is obviously valid.

In turn, the variance is given by

D

[
Z(k)∑N
i=1 Z(i)

]
= D

[
Y(N−k+1)∑N

i=1 Y(i)

]
,

or

D

[
Y(k)∑N
i=1 Y(i)

]
=

1

N(N + 1)

⎛⎝ N∑
i=k

1

i2
− 1

N

(
N∑
i=k

1

i

)2
⎞⎠ . (26)

The probability function of the normalized ordered discrete spectrum is approximately calculated
using the formula [16]

nk(N) = − 1

NKN
ln

k

N + 1
, where KN = − 1

N

N∑
k=1

ln
k

N + 1
. (27)
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Fig. 1. Discrete distributions ñk(N) and nk(N) for the series of size N = 8:
the horizontal axis in (a) linear and (b) logarithmic scale.

Fig. 2. Discrete distributions ñk(N) and nk(N) for the series of size N = 512:
the horizontal axis in (a) linear and (b) logarithmic scale.

Now we compare the discrete distributions: the exact (25) and approximate (27) ones.

For large values of N and k, the expression (25), which is the difference of harmonic series, can
be approximated in various ways. Let us choose the estimate

N∑
i=1

1

i
−

k−1∑
i=1

1

i
≈ − ln

k

N + 1
,

which is well-defined and makes sense for all N and k ∈ [1, . . . , N ] and also appears in (27).

Figures 1 and 2 present the plots of the distributions (25) and (27) depending on the sample
number. The symbol σ indicates the standard deviation of the distribution of the order statistic
given by (26).

According to Figs. 1 and 2, the exact values of the mean of (25) slightly differ from those of the
distribution (27) for a small number of points (members of the spectral series), almost coinciding for
the other samples. As N grows, the share of points deviating from the estimate rapidly decreases.
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Lemma 3. In the general case, a more accurate estimate is

N∑
i=1

1

i
−

k−1∑
i=1

1

i
≈ − ln

k − 0.5

N + 0.5
, (28)

which is also well-defined and makes sense for all N and k ∈ [2, . . . , N ].

Proof. To show this fact, we address the theory of harmonic series.

The partial sum of the first N terms of the harmonic series is called the Nth harmonic number:

HN =
N∑
i=1

1

i
= 1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

N
. (29)

In 1740, Euler derived an asymptotic expression for HN , called the Euler–Maclaren formula:

HN = lnN + γ +
1

2N
− εN , (30)

where γ = 0.5772 . . . is the Euler–Mascheroni constant and 0 � εN � 1/8N2. Hence, εN → 0 as
N → ∞, and for large N we have

HN = lnN + γ +O(N−1) ≈ lnN + γ. (31)

This expression is called the Euler formula for the sum of the first n members of the harmonic
series. Returning to (30), note that

ln

(
N +

1

2

)
= lnN +

1

2N
+O

(
1

N2

)
. (32)

Substituting the right-hand side into (30) yields

HN = ln

(
N +

1

2

)
+ γ +O

(
1

N2

)
, (33)

since the numbers εN and εk+1 have a close order of smallness with respect to 1
N2 and 1

k2
, which

rapidly vanish with increasing N and k.

Therefore, (28) takes the form

N∑
i=1

1

i
−

k−1∑
i=1

1

i
= HN −Hk−1 = ln

(
N +

1

2

)
+O

(
1

N2

)
− ln

(
k − 1

2

)
+O

(
1

(k − 1)2

)
. (34)

Thus, for relatively large N and k, we arrive at the estimate

N∑
i=1

1

i
−

k−1∑
i=1

1

i
≈ − ln

k − 0.5

N + 0.5
, (35)

and the proof of this lemma is complete.

To proceed, we approximately calculate the probability function of the normalized ordered dis-
crete spectrum by the formula

nk(N) = − 1

NKN
ln

2k − 1

2N + 1
, where KN = − 1

N

N∑
k=1

ln
2k − 1

2N + 1
. (36)
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Fig. 3. Discrete distributions ñk(N) and nk(N) for the series of size N = 8:
the horizontal axis in (a) linear and (b) logarithmic scale.

Fig. 4. Discrete distributions ñk(N) and nk(N) for the series of size N = 512:
the horizontal axis in (a) linear and (b) logarithmic scale.

The result of this lemma is illustrated in Figs. 3 and 4.

Obviously, the two distributions almost coincide even for small N. Now, assuming that the
normalized order statistics (η1, . . . , ηN ) take values p = (p1, . . . , pN ), the spectral complexity can
also be set based on the distribution (25) by the formula

CSS(p) = − 1

4 log2 N

(
N∑
k=1

pk log2 pk

)(
N∑
k=1

|pk − ñk(N)|
)2

(37)

or its approximate analog (36) by the formula

CS(p) = − 1

4 log2N

(
N∑
k=1

pk log2 pk

)(
N∑
k=1

|pk − nk(N)|
)2

; (38)

this will be demonstrated in Section 6.
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6. STATISTICAL SIMULATION OF DETERMINISTIC SIGNAL DETECTION

To illustrate the analytical results of this paper, we use the statistical simulation procedure
based on the analysis of the generated numerical data. It was described in detail in the authors’
previous paper [16]. As before, all numerical results were obtained using the Python language and
the Numpy and Scipy libraries.

Consider pairs of data sequences corresponding to two hypotheses of signal receipt:{
Γ0 : xn = wn

Γ1 : xn = sn + wn, n = 1, . . . , N.
(39)

The hypothesis Γ0 is associated with the decision to receive only noise while the hypothesis Γ1

with the decision to receive a mixture of a useful signal and noise, where the sequences {x(n)},
{s(n)}, and {w(n)}, n = 1, . . . , N, denote the time series of the received data, useful signal, and
additive white Gaussian random noise, respectively, and N is the time series (frame) length.

To test the quality of distinguishing between the useful deterministic signal and noise, statistics
were collected on Q = 50000 numerically generated frames {xn} of the signal-noise mixture of
length 2N = 16384 with spectra size N = 8192, respectively. In all realizations, the signal {sn}
remained the same, i.e., a fixed (in number and amplitude) set of K = 30 sinusoids evenly spaced
along the spectrum with random phases. The additive white Gaussian noise {wn} was obtained by
a Gaussian sequence generator with the mean μ = 0 and variance Σ (within one set of Q frames).

Figure 5 shows the ordered discrete spectral distributions pk for particular signal realizations and
the theoretical means of ñk(N) described by (25). Obviously, in each realization, the real spectral
distribution of white noise may appreciably differ from the theoretical one ñk(N). However, all such
realizations lie within the confidence interval defined by the standard deviation σ of the distribution
of the order statistic (26). The blue color in Fig. 5 indicates the domain bounding the confidence
interval for each sample number k with the upper and lower bounds ñk(N)± 3σ.

For each resulting sequence {xn}, the order statistic of the discrete normalized spectral distri-
bution pk was calculated; for details, see [9, 15]. Next, based on pk, the values of CSS (37) and
CS (38) were obtained for the noise and noise-signal mixture satisfying the two hypotheses from the

Fig. 5. Discrete distributions ñk(N) and pk for the series of size N = 8192 and SNR = −15.22 dB:
the time sequence of (a) noise data wn and (b) signal and noise data sn + wn. The horizontal axis in
logarithmic scale.
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Fig. 6. The quality of binary classification in the AUC ROC metric depending on SNR
for the spectral complexity functions under consideration.

expressions (39). The value of CS was found for the two different approximations (27) and (36) of
the order statistics of the spectral distribution of the white noise: it seems interesting to compare
them as well.

The final result of simulating and comparing the calculated information metrics is the quality of
binary classification in the AUC ROC (Area Under the Receiver Operating Characteristic Curve)
metric depending on SNR, defined by

SNR = 10 log10

(
Esignal

Enoise

)
, (40)

where Esignal and Enoise denote the total signal and noise energies, respectively, calculated as the
sum of the powers of the spectral decomposition of the sequences {sn} and {wn}.

To obtain this dependence, the statistic Q of frames described above was collected for several
values of the noise variance Σ, the histograms of the distributions of CSS and CS were built, and
the values of AUC ROC were finally calculated [16].

Figure 6 shows the comparison of the quality of binary classification of the signal and noise
for the information metrics CSS and CS . Obviously, the indicators for the functions CSS and CS ,
calculated using (36) with theoretical justification by Lemma 3, coincide almost completely. In ad-
dition, the information characteristic CS calculated using formula (36) from the authors’ previous
paper [16] has a slight improvement in the quality of detection. All the analytical information
criteria introduced in this paper demonstrate a high quality of detection of the deterministic signal
in noise under small SNR values.
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7. CONCLUSIONS

This paper has established that the order statistic of a discrete normalized spectral distribution
is a powerful tool for detecting a deterministic signal under small SNR values in single-window
observations. The spectral complexity calculated on a particular realization of the signal-noise
mixture has been used as a detection criterion.

An attempt to separate the two problems (the detection/pre-detection of deterministic signals
in white noise under small SNR values and classification) has demonstrated that increasing the
sensitivity of the detection method causes the loss of all physical properties of the signal: further
work involves only the informational ones. A simple analogy with quantum systems is suggested
here, in which there exists an uncertainty relation when the researcher cannot accurately measure
the speed and coordinate simultaneously. In fact, the reduced informativeness of particular signal
frequencies makes it impossible to classify the signal, let alone recover the signal from a measurement
together with noise. However, the ordering of the noise spectrum has a particular rigid structure
allowing one to judge the presence of a signal even beyond the sensitivity of classical energy receivers.

Moreover, it seems promising to apply the proposed detection method for other types of noise
as well as to construct classification grids for signals based on the information characteristics of the
spectra of signal-noise mixtures. These will be the subjects of the next research by the authors.
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